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A B S T R A C T   

Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification 
By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyper-
polarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received sig-
nificant attention in the scientific community since its inception because of its relative experimental simplicity 
and its broad applicability to a wide range of molecules, however, in vivo detection of molecular probes 
hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized 
contrast detected in vivo, specifically using hyperpolarized [1–13C]pyruvate. Biocompatible formulations of 
hyperpolarized [1–13C]pyruvate in, both, methanol-water, and ethanol-water mixtures followed by dilution with 
saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective 
hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. 
Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was 
also observed as a minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time- 
resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements 
were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI sys-
tems with simple, low-cost hyperpolarization chemistry to develop safe and scalable molecular imaging.   

Introduction 

Traditional NMR and MRI approaches, which rely on thermal nu-
clear spin polarization, face significant sensitivity limitations compared 
to other analytical chemistry or medical imaging techniques, and 
require relatively high concentrations of detected molecules. To address 
the sensitivity challenge faced by MR approaches, hyperpolarization 
methods have been developed to align much larger fractions of nuclear 

spins and to improve the sensitivity limits of NMR and MRI by several 
orders of magnitude[1–6]. Indeed, the first hyperpolarized (HP) contrast 
agent (129Xe gas)[7–11] has been FDA approved for ventilation lung 
imaging. Other HP molecular probes are also emerging for molecular 
imaging, including [1–13C]pyruvate[12]. HP [1–13C]pyruvate is similar 
to the [18F]fluorodeoxyglucose PET[13,14] tracer in that it allows mo-
lecular sensing of aberrant energy pathways in cancer[2,3] and many 
other diseases[15,16]. Currently in over 30 clinical trials, dissolution 
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Dynamic Nuclear Polarization (D-DNP)[17] is the hyperpolarization 
method employed for production of HP [1–13C]pyruvate for molecular 
imaging applications. Hyperpolarized MRI can directly track and image 
metabolic events at any depth inside tissue at modest sub-mM concen-
trations and it is relatively safe because HP MRI uses injectable contrast 
agents that are endogenous biomolecules, instead of radioactive mate-
rial. The disadvantages of D-DNP are that it is infrastructure-intensive 
and relatively slow to build up hyperpolarization (~1 hour). A faster 
and perhaps simpler approach to hyperpolarize [1–13C]pyruvate is 
parahydrogen-induced polarization (PHIP)[5,18-20]. One possibility is 
side-arm hydrogenation PHIP (SAH-PHIP)[21,22], which has been 
successfully used to hyperpolarize [1–13C]pyruvate[23–25], the most 
common hyperpolarized MRI tracer. In SAH-PHIP an unsaturated side 
arm of a pyruvate ester is hydrogenated with parahydrogen, the polar-
ization is transferred to the 13C nucleus, and the pyruvate is then cleaved 
via hydrolysis of the ester. Although SAH-PHIP is a successful approach 
for PHIP hyperpolarization of [1–13C]pyruvate, the synthesis of the 
unsaturated pyruvate ester precursors is relatively complex and storage 
is not trivial. Unlike any existing method, Signal Amplification By 
Reversible Exchange (SABRE) hyperpolarizes sodium [1–13C]pyruvate 
directly and without the need for chemical modifications[26,27]. As 
depicted in Fig. 1, SABRE relies on reversible exchange of parahydrogen 
and a to-be-hyperpolarized substrate, [1–13C]pyruvate in the present 
case, on an Ir-catalyst to create a spin network connecting parahydrogen 
and the target substrate. Continuous reversible exchange of para-
hydrogen and the substrate leads to rapid polarization build-up within 
the bulk [1–13C]pyruvate molecules in solution. In principle, the 
resulting HP agent can be processed to quickly obtain biocompatibility 
for subsequent injection into the subject to monitor metabolic changes. 

Since its inception[26–28], SABRE hyperpolarization chemistry has 
undergone significant developments[29–32]. First, SABRE was primar-
ily optimized to hyperpolarize protons in target substrates[26-28,33]. 
With the invention of the SABRE-SHEATH (SABRE in Shield Enables 
Alignment Transfer to Heteronuclei) variant, it became possible to 
efficiently hyperpolarize 15N and 13C nuclei that are associated with 
longer hyperpolarization lifetimes[34–42]—such as in [1–13C]pyruvate 
[43,44]. Subsequent developments enabled polarization levels 
exceeding 10% using temperature cycling[45,46] and/or various 
pulsed-field approaches[47–50]. Building on these recent advances, 
here we show the first detection of a SABRE-hyperpolarized substrate, 
[1–13C]pyruvate, in vivo. Using a rat model, spectroscopic tracking of 
metabolic turnover and Chemical Shift Imaging (CSI) are demonstrated 
for kidney, liver, and whole body at multiple experimental sites, 
pointing towards the development of a truly scalable molecular imaging 
technique resulting from the combination of fast, simple SABRE hy-
perpolarization chemistry with low-cost, cryogen-free MRI[51–55]. 

Methods 

Sample preparation 

Under inert gas conditions, [1–13C]pyruvate, [Ir(IMes)(COD)Cl] 
(IMes= 1,3 bis(2,4,6-trimethylphenyl)imidazole-2-ylidene, 
COD=cyclooctadiene) polarization-transfer pre-catalyst, and DMSO 
were mixed to give absolute concentrations of 65 mM [1–13C]pyruvate, 
24 mM DMSO, and 6 mM Ir-IMes in CD3OD. Ir-IMes catalyst was syn-
thesized using literature methods[56,57]. Dry CD3OD was used as pro-
vided from the supplier (Cambridge Isotopes) and degassed with 5 
freeze-pump-thaw cycles. All other chemicals used were purchased 
from Millipore Sigma. 

Hyperpolarization and sample processing 

[1–13C]pyruvate was hyperpolarized by bubbling parahydrogen 
through a 500 µL solution containing 6 mM iridium-IMes catalyst, 24 
mM DMSO, and 65 mM [1–13C]pyruvate at 100 psi inside a standard 
NMR tube using a previously described bubbling setup[46]. The sample 
is pre-cooled to 0 ◦C and then, as illustrated in Fig. 2, placed into a 
Polarization Transfer Field (PTF) of 0.3 µT established in mu-metal 
shields provided by MagneticShield Corp. (ZG-203). After 90 s of 
bubbling parahydrogen, at room temperature and 0.3 µT field, hyper-
polarization of about 10% is achieved, and the sample is manually 
transferred into a 0.3 T Halbach array, where the parahydrogen pressure 
is released. The sample is subsequently pulled into a syringe prefilled 
with saline solution, creating a saline-methanol mixture. For the ex-
periments at 4.7 T at Massachusetts General Hospital (MGH), 1.5 mL 
saline was used creating at total injectable volume of 2 mL, with a 
methanol-to-saline ratio of 1:3. These concentrations correspond to a 
pyruvate dosage of 11.3 mg/kg (0.13 mmol/kg) injected into ~250 g 
Sprague Dawley rats. For the experiments at 1.5 T (at NC State) using the 
cryogen-free MRI system, only 1 mL of saline was used, creating a total 
injectable volume of 1.5 mL with a methanol-to-saline ratio of 1:2. These 
concentrations correspond to a pyruvate dosage of 14.1 mg/kg (0.16 
mmol/kg) injected into ~200 g Wistar rats. These dosages of hyper-
polarized and injected pyruvate are lower than those in typical D-DNP 
hyperpolarized MRI studies, which are closer to (0.75 to 1 mmol/kg) 
[58–62]. For all animal studies, the rats were sedated with isoflurane 
before placing them in the MRI scanner. Isoflurane was continuously 
provided via a nose cone in the MRI scanner during experimentation, 
and the heart and breathing rates were continuously monitored. The 
vitals remained stable after injection, and the animals were euthanized 
before waking from anaesthesia, approximately 10 min after completion 
of the experiment. While the injected quantities of methanol in these 
proof-of-concept studies were near the LD50, the toxic effects of meth-
anol are delayed well past the timepoint of euthanasia, allowing the 
described experiments. All animal handling procedures were conducted 
under the appropriate IACUC protocols at NC State and MGH. At NC 

Fig. 1. SABRE hyperpolarization chemistry: both parahydrogen and the 
[1–13C]pyruvate substrate are in reversible exchange with the polarization 
transfer catalyst, [IrH2(IMes)(DMSO)(pyruvate)]. During the lifetime of 
the polarization-transfer complex, comprising the catalyst, substrate, and 
parahydrogen (tens to hundreds of milliseconds), the polarization is 
transferred from the parahydrogen singlet state on the hydrides to the 13C 
nucleus in pyruvate transiently bound on the catalyst. Continuous ex-
change leads to hyperpolarization build-up on the free pyruvate in solu-
tion. This build-up process requires roughly 1.5 min to reach steady-state 
hyperpolarization.   
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State, hyperpolarized 13C MR data were acquired from the whole body 
of the animals. The cryogen-free, variable-field MRI system at NC State 
used whole body transmit/receive 13C volume coils (5.2 cm RF window 
length and 6.5 cm in diameter). The spectroscopic data were obtained 
using 20◦ non-selective 0.314 ms hard pulses, a repetition time (TR) of 2 
s including a 0.68 s acquisition time, 12 kHz spectral bandwidth, and 
8192 spectral points. 

At MGH, the hyperpolarized 13C animal experiment was conducted 
on a 4.7 T animal MRI scanner (Bruker Biospin, Billerica, USA) using a 
commercial transmit/receive proton volume coil (Bruker, Billerica, 
USA) for localization and shimming. 13C experiments used a custom- 
made transmit/receive 13C surface coil with a 6 cm inner diameter for 
13C acquisitions. In the dynamic spectroscopy experiments, a pulse-and- 
acquire sequence was used with a non-selective 0.11 ms hard pulse, 
centred at 180 ppm with a 30◦ nominal flip angle and a repetition time 
(TR) of 3 s. For all chemical shift imaging (CSI) experiments, a sinc pulse 
with 11,000 Hz bandwidth and 0.56 ms length was used to selectively 
excite a single axial slice of 15 mm thickness. CSI parameters were: TR 
410 ms, echo time (TE) 1.05 ms, 20◦ nominal flip angle, spectral 
bandwidth 10,080 Hz, 4096 spectral points, field of view (FOV) of 80 
mm × 40 mm, and matrix size 8 × 8. Fig. 2 provides a general overview 
of the experimental procedures. 

Results and discussion 

In vivo spectroscopy at 4.7 T 

Fig. 3 shows the data obtained for the first observation of metabolic 
conversion using dynamic spectroscopy employing SABRE- 

hyperpolarized [1–13C]pyruvate. The surface coil was placed either on 
the liver or the kidney of the rat, the hyperpolarization was started, 
followed by dilution with saline, injection, and data acquisition. As seen 
in Fig. 3, the data clearly show peaks for lactate, alanine, pyruvate- 
hydrate, and bicarbonate. Figs. 3A-C show the data acquired from the 
liver, and Figs. 3D-F from the kidney. In comparison, the data from the 
liver clearly shows a higher metabolic rate as expected[58], while noting 
that in the presented pilot studies significant quantities of methanol 
were injected, which is known to alter metabolism[63,64]. Future work 
will use ethanol/water as described below, or fully aqueous injectables 
[65]. Figs. 3A and D show spectra created by summing the data across 
the full time duration for liver and kidney, respectively. Most metabolic 
turnover is observed to lactate and alanine, whereas conversion to 
pyruvate-hydrate and bicarbonate is less pronounced. Figs. 3B and E 
show the full time-resolved spectra. Figs. 3C and F show the corre-
sponding projection of the signals for pyruvate, lactate, and alanine as a 
function of time, revealing the time course of pyruvate perfusion con-
voluted with metabolic conversion and T1 relaxation for the individual 
metabolites—as expected from previous D-DNP work[58]. As can be 
seen, metabolic tracking for about one minute was possible in these first 
proof-of-concept studies. 

In vivo spectroscopic imaging at 4.7 T 

In addition to in vivo spectroscopy, we implemented Chemical Shift 
Imaging (CSI) to visualize the spatial distribution of the SABRE- 
hyperpolarized [1–13C]pyruvate within the kidney and liver as dis-
played in Fig. 4. The individual spectra were integrated and turned into 
a heat map superimposed on an anatomical proton-MRI slice of the 

Fig. 2. Experimental procedure of MRI 
in vivo studies. [A] SABRE hyperpolar-
ization takes place inside of a mu- 
magnetic shield at a polarization trans-
fer field of 0.3 µT. The sample is pre- 
cooled to 0 ◦C and then parahydrogen 
is bubbled through the solution for 90 s 
allowing for polarization buildup in the 
magnetic shields. [B] The sample is 
transferred to a 0.3 T Halbach array (to 
help slow relaxation of the hyperpolar-
ization) for depressurization and ejec-
tion into a syringe pre-filled with saline, 
taking 10 s. [C] After ejection the sam-

ple is moved across the room and attached to the catheter for injection, requiring ~10 s. [D] After injection, a two-minute scan is applied with 20◦ pulses and 
repetition time of 2 s to detect the metabolic products of pyruvate—namely lactate, alanine, and bicarbonate. (Pyruvate-hydrate is also detected).   

Fig. 3. In vivo spectra acquired on two 
rats (Sprague Dawley, female) using a 
dynamic spectroscopy sequence and a 
different field of view on the liver [A-C] 
and kidney [D-F]. [A, D] Summed 
spectra of the complete dynamic spec-
troscopy acquisition. [B, E] Spectra 
overlay of the dynamic-spectroscopy 
acquisition with lactate (red), alanine 
(green), and pyruvate (blue) integration 
regions highlighted. [C, F] Plot of the 
integrated acquisition for pyruvate, 
lactate, and alanine using the spectra 
shown in B and E. The spectra in this 
temporal series are acquired with 30◦

flip angle and 3 s delay between 
acquisitions.   
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imaged region. Figs. 4A-C show the data acquired with the surface coil 
placed on the liver, whereas Figs. 4D-E show the data acquired when the 
surface coil was placed on the kidney. Figs. 4A and D show the respective 
raw CSI data displaying the spectra acquired in a 8 × 8 grid covering a 
field of view (FOV) of 8 × 4 cm2. Figs. 4B and E each show a heatmap 
over the corresponding anatomical image, which was then smoothed by 
zero-filling the data to assist with visualization—as shown in Figs. 4C 
and F. In this work, the excitation pulses were selectively applied on the 
[1–13C]pyruvate peaks to ensure visibility and sufficient signal-to-noise. 
The liver image shows most pyruvate signal primarily centred around 
the heptic vein, whereas the kidney image shows most pyruvate signal 
centred around the renal vein. The current imaging data does not 
contain information on the metabolic products and only visualized the 
SABRE-hyperpolarized [1–13C]pyruvate; nevertheless, the CSI approach 
will be critical in future studies imaging disease models, where the 
production of metabolites may be strongly modulated. For example, the 
production of lactate is often greatly increased in the presence of tumors 
because of the Warburg effect[3,66-70]. 

Cryogen-free 1.5 T hyperpolarized in vivo spectroscopy 

In tandem with the work performed at MGH, experiments were 
conducted at NC State using a cryogen-free variable-field MRI scanner. 
The use of a cryogen-free MRI and lower magnetic fields circumvents the 
need for large amounts of helium, reducing installation and mainte-
nance costs. Examples of D-DNP detected with 1 T permanent magnets 
have been described [71]. With SABRE, even the combination with 
portable bedside (“point-of-care”) MRI[51,52] becomes imaginable. The 
variable field of our unique MRI (5 mT - 3 T) assists with the broader 

translation into clinical settings, as the common clinical fields are be-
tween 1.5 - 3 T. Studies closely comparable to those performed on the 
preclinical 4.7T MGH scanner are shown here. Differences reside in the 
use of a whole body volume coil instead of surface coils, slightly smaller 
animals (~200 g versus ~250 g), and operation at 1.5 T. The selection of 
1.5 T helps to establish direct correlation to more clinical settings often 
operating at this field. Fig. 5A shows summed spectra of the hyper-
polarized pyruvate, along with its downstream metabolic products 
lactate and alanine, as well as the bicarbonate as minor metabolite and 
pyruvate-hydrate as minor byproduct. Since the 1.5 T data is acquired 
using a full-body coil, the signal represents an average across the whole 
rat, showing lower metabolic activity in comparison to the [1–13C]py-
ruvate signal from the liver and kidney (which are more metabolically 
active organs). In addition, shimming the magnetic field over a full body 
is more challenging than over individual organs, which is reflected in 
broader spectral features visible in Fig. 5A, in contrast to those from 
Figs. 3A and C. Despite these challenges hyperpolarized signal is 
detectable for over one minute, and time-resolved metabolism could be 
observed as illustrated in Figs. 5B and C—presented in analogy to Fig. 3. 
Overall, the experiments shown in Fig. 5 indicate the successful com-
bination of low-cost hyperpolarization with low-cost MRI to achieve in 
vivo detection of metabolic transformations, advancing this technology 
and setting the stage for future developments and biomedical 
applications. 

Fig. 4. Chemical Shift Imaging (CSI) 
experiments on two separate animals 
(shown in separate rows) with two 
different fields of view (liver, row 1; 
kidney, row 2). [A, D] 8 × 8 array of the 
64 spectra acquired in the respective 
CSI experiments. [B, E] Integration of 
the peaks shown in the spectra to obtain 
a intensity map overlayed on top of the 
centre anatomical slice of the imaged 
region. [C, F] zero-filled intensity map 
(16 × 16) for visualization of the CSI 
results. CSI results are acquired linearly 
in a 8 × 8 matrix using a 20◦ flip angle 
and a 0.41 s TR.   

Fig. 5. In vivo spectra acquired on one 
[Wistar, female] rat using a dynamic 
spectroscopy sequence. [A] Summed 
spectra of the complete dynamic spec-
troscopy acquisition. [B] Stack plot of 
the dynamic spectroscopy acquisition 
with lactate (red), alanine (green), and 
pyruvate (blue) integration regions 
highlighted. [C] Plot of the integrated 
acquisition for pyruvate, lactate, and 
alanine using the spectra shown in B. 
The spectra in this temporal series are 

acquired with a 20-degree flip angle and a 2 s delay between acquisitions.   
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Cryogen-free 1.5 T hyperpolarized in vivo spectroscopy using [1–13C] 
pyruvate hyperpolarized in an ethanol-water mixture followed by catalyst 
filtration 

Although SABRE has seen significant advances as leveraged in the 
above sections, there are still barriers to clinical translation because of 
the usage of methanol, and the presence of the iridium catalyst. The 
SABRE community has put effort into moving towards biocompatibility 
(i.e. a catalyst free, aqueous solution), including developments in water 
soluble catalysts [40,72–74], heterogenous catalysts[75–77], and 
dissolution schemes. [65,78,79] However, none of the described 
methods have established in vivo use. In this section, we showcase the 
first methanol free solution with catalyst filtration of hyperpolarized 
pyruvate detected in vivo employing SABRE. To attain sufficient solu-
bility of [1–13C]pyruvate in ethanol, a 9-to-1 ethanol-water mixture was 
used, which balances solubility restrictions of both sodium [1–13C]py-
ruvate and the [Ir(IMes)(COD)Cl] SABRE pre-catalyst. Sodium pyruvate 
is essentially insoluble in pure ethanol and the SABRE catalyst is insol-
uble in water. The 9-to-1 ethanol water mixture was found to work well 
providing sufficient hyperpolarization for in vivo detection as described 
in the following. 

First, a 500μL solution of an ethanol and water medium with 6 mM 
Ir-IMes catalyst, 20 mM dimethyl sulfoxide, and 30 mM [1–13C]pyruvate 
was prepared. Next, hyperpolarized [1–13C]pyruvate was generated by 
bubbling parahydrogen at 200 sccm and 150 psi for 60 s at 0.4 µT during 
active temperature cycling initialized at 0 ◦C, as previously demon-
strated in methanol[45]. The reproducibility was assessed across mul-
tiple days and ten samples, resulting in an average polarization of p =
4.5 ± 0.7% on free [1–13C]pyruvate. The polarization achieved in this 
work is significantly higher than previous reports in ethanolic media 
[65]. The spectrum with the largest observed polarization on free 
[1–13C]pyruvate, p = 5.8%, is shown in Fig. 6A. 

To further reduce the toxicity of the SABRE sample, we utilized a 
filtration method for catalyst removal prior to injection. Specifically, we 
employed commercially available C18 silica cartridges (Waters, SepPak 
Plus), where the non-polar nature of the column has strong interactions 
with the non-polar portion of the SABRE catalyst (IMes ligand), whereas 

the highly polar pyruvate ion remains in the mobile, polar phase. We 
used mass spectrometry to quantify the efficacy of the filters. Encour-
agingly, the filters were able to remove > 95% of the iridium from the 
sample, as summarized in Table 1, with no additional optimization. This 
corresponds to an average iridium content of 6 ± 2 ppm in the injected 
solution (1.5 mL total, experiment repeated 3 times). Future optimiza-
tion of the non-polar filtration phase is expected to reduce the catalyst 
content further. 

To validate the utility of using methanol free solutions with catalyst 
filtration, we performed an in vivo spectroscopic study using the variable 
field, cryogen free MRI set at 1.5 T as described above. We followed a 
similar experimental procedure to the pilot SABRE in vivo studies pre-
sented above. In this procedure, highly polarized [1–13C]pyruvate is first 
generated in an NMR tube. The tube is then inserted into a Halbach array 
to ensure adiabaticity during depressurization and ejection into a sy-
ringe. We note that magnetic field control in this step is vital to retain the 
polarization. The syringe, which is prefilled with 1 mL saline, is then 
quickly transported to the catheterized rat injection line. In contrast to 
the methods described above, a filter was added to the injection line for 
catalyst removal, as illustrated in Fig. 6B. Following injection, we 
employed a temporal pulse sequence using 20◦ excitation pulses every 2 
s to monitor pyruvate resonance signals in vivo. The result of the 
described method is displayed in Fig. 6C, where pyruvate resonance 
signals were detected for over 30 s. Fig. 6D showcases the summed 
spectra of the complete temporal series, where production of pyruvate 
metabolites could be observed. 

Fig. 6. [A] Hyperpolarized pyruvate generated in an 9:1 ethanol water mixture. [B] Schematic incorporating a C-18 filter into the experimental procedure. [C] 
Summed and [D] stacked spectra of experimental results from a temporal acquisition using 20◦ flip angles (TR = 2 s) of hyperpolarized pyruvate, generated in an 
ethanol-water medium with subsequent catalyst filtration, detected in a healthy Wistar rat. 

Table 1 
Quantification of SABRE catalyst removal using commer-
cially available C18 silica cartridges.  

Sample Iridium content [ppm] 

Blank 1 
Unfiltered 256 
Filtered 6 ± 2  
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Conclusion 

The first in vivo metabolic hyperpolarized MRI experiments were 
demonstrated using SABRE hyperpolarization chemistry and [1–13C] 
pyruvate as an exogenous molecular probe. [1-13C]pyruvate is the 
leading molecular probe because it is a key metabolite that is often 
dysregulated in many disease states. In vivo studies were performed on 
two different instruments at two different sites to provide multi-site 
validation of the emerging SABRE technology: a 4.7 T magnet at MGH 
and a 1.5 T cryogen-free magnet at NC State. We also note that further 
multi site validation is provided by a group from Freiburg University 
that was able to provide first in vivo data using SABRE-polarized pyr-
uvtate at the same time [80]. Both MRI systems showed good 
signal-to-noise for the detection of SABRE-hyperpolarized [1–13C]py-
ruvate and enabled real-time metabolic tracking of the formation of 
lactate, alanine, and bicarbonate. (The formation of pyruvate-hydrate is 
also observed.) The presented work is a milestone in the translation of 
SABRE hyperpolarization chemistry—which has been under develop-
ment for almost 15 years since inception—to pre-clinical applications 
focused on biomedical questions. 

The presented work includes injections of methanol-water mixtures 
that still contain hyperpolarization catalyst showing clear conversion of 
pyruvate to alanine, lactate and bicarbonate. These experiments also 
enable Chemical Shift Imaging. For ultimate preclinical or clinical 
translation, methanol and iridium catalyst are not acceptable, therefore 
we also presented hyperpolarization in ethanol-water mixtures followed 
by dilution with saline and filtration, while retaining the polarization 
such that in vivo detection was still possible. Yet for widespread use 
further improvements to the sample processing protocol are still needed. 

The facile nature of SABRE hyperpolarization chemistry makes 
SABRE based technology a good candidate for broader dissemination 
with the potential to become competitive in the landscape of existing 
molecular imaging technologies, and medical imaging at large. Specif-
ically, the combination of portable, low-field MRI approaches that 
otherwise suffer from significant sensitivity limitations could be com-
bined with relatively simple SABRE hyperpolarization chemistry work-
ing towards broadly available molecular imaging with the ability to 
track individual metabolic pathways. 
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